[1] Fang, Z., Feng, T.*, Qin, G., Meng, Y., Zhao, S., Yang, G., Wang, L., Sun, W., 2024. Simulations of water pollutants in the Hangzhou Bay, China: Hydrodynamics, characteristics, and sources. Marine Pollution Bulletin 200, 116140. doi:10.1016/j.marpolbul.2024.116140
[2] Chen, B., Zheng, Q., Sun, W., Yang, G., Feng, T., Wang, Y., 2024. Geo-STO3Net: A deep neural network integrating geographical spatiotemporal information for surface ozone estimation. IEEE Transactions on Geoscience and Remote Sensing 4102214. doi:10.1109/TGRS.2024.3358397
[3] Long, X., Han, Y., Wang, Q.Y., Li, X.K., Feng, T., Wang, Y.C., Wang, Y., Zhang, S.L., Han, Y.M., Li, G.H., Tie, X.X., Cao, J.J., Chen, Y., 2024. Adverse Effects of Ozone Pollution on Net Primary Productivity in the North China Plain. Geophys. Res. Lett. 51, e2023GL105209. doi:10.1029/2023GL105209
[4] Feng, T., Liu, L., Zhao, S., 2023. Impacts of haze and nitrogen oxide alleviation on summertime ozone formation: A modeling study over the Yangtze River Delta, China. Environ. Pollut. 335, 122347. doi:10.1016/j.envpol.2023.122347
[5] Qin, G., Fang, Z., Zhao, S., Meng, Y., Sun, W., Yang, G., Wang, L., Feng, T.*, 2023. Storm Surge Inundation Modulated by Typhoon Intensities and Tracks: Simulations Using the Regional Ocean Modeling System (ROMS). Journal of Marine Science and Engineering 2023, Vol. 11, Page 1112 11, 1112–23. doi:10.3390/jmse11061112
[6] Zhang, Q., Feng, T.*, Wang, M., Yang, G., Lu, H., Sun, W., 2023a. A Twenty-Year Assessment of Spatiotemporal Variation of Surface Temperature in the Yangtze River Delta, China. Remote Sens. 15, 2274–18. doi:10.3390/rs15092274
[7] Zhao, S., Feng, T.*, Xiao, W., Zhao, S. and Tie, X.*: Weather-Climate Anomalies and Regional Transport Contribute to Air Pollution in Northern China During the COVID-19 Lockdown, J. Geophys. Res. - Atmospheres, 127(24), e2021JD036345, doi:10.1029/2021JD036345, 2022.
[8] Feng, T.*, Chen, H. and Liu, J.: Air pollution-induced health impacts and health economic losses in China driven by US demand exports, Journal of Environmental Management, 324, 116355, doi:10.1016/j.jenvman.2022.116355, 2022.
[9] Zhang, Q., Liu, L., Yang, G., Sun, W.*, Lu, H. and Feng, T.*: Effects of wintertime haze on regional thermal environment and urban heat island in the Yangtze River Delta, China, Urban Climate, 47, 101354, doi:10.1016/j.uclim.2022.101354, 2023.
[10] Wang, P., Zhou, W., Xiong, X., Wu, S., Niu, Z., Yu, Y., Liu, J., Feng, T., Cheng, P., Du, H., Lu, X., Chen, N. and Hou, Y.: Source Attribution of Atmospheric CO2 Using 14C and 13C as Tracers in Two Chinese Megacities During Winter, J. Geophys. Res., 127(12), e2022JD036504–12, doi:10.1029/2022JD036504, 2022.
[11] Feng, T., Zhao, S., Bei, N., Liu, S. and Li, G.: Increasing atmospheric oxidizing capacity weakens emission mitigation effort in Beijing during autumn haze events, Chemosphere, 281, 130855, doi:10.1016/j.chemosphere.2021.130855, 2021a.
[12] Feng, T., Zhao, S., Hu, B., Bei, N., Zhang, X., Wu, J., Li, X., Liu, L., Wang, R., Tie, X. and Li, G.: Assessment of Atmospheric Oxidizing Capacity Over the Beijing-Tianjin-Hebei (BTH) Area, China, J. Geophys. Res. - Atmospheres, 126(7), e2020JD033834, doi:10.1029/2020JD033834, 2021b.
[13] Feng, T., Zhao, S., Liu, L., Long, X., Gao, C. and Wu, N.: Nitrous acid emission from soil bacteria and related environmental effect over the North China Plain, Chemosphere, 132034, doi:10.1016/j.chemosphere.2021.132034, 2021c.
[14] Zhang, X., Feng, T.,* Zhao, S., Yang, G., Zhang, Q., Qin, G., Liu, L., Long, X., Sun, W., Gao, C. and Li, G.: Elucidating the impacts of rapid urban expansion on air quality in the Yangtze River Delta, China, Sci. Total Environ., 149426, 2021.
[15] Feng, T., Bei, N., Zhao, S., Wu, J., Liu, S., Li, X., Liu, L., Wang, R., Zhang, X., Tie, X. and Li, G.: Nitrate debuts as a dominant contributor to particulate pollution in Beijing: Roles of enhanced atmospheric oxidizing capacity and decreased sulfur dioxide emission, Atmos. Environ., 244, 117995, doi:10.1016/j.atmosenv.2020.117995, 2021.
[16] Feng, T., Zhao, S., Zhang, X., Wang, Q., Liu, L., Li, G. and Tie, X.: Increasing wintertime ozone levels and secondary aerosol formation in the Guanzhong basin, central China, Sci. Total Environ., 745, 140961, doi:10.1016/j.scitotenv.2020.140961, 2020.
[17] Feng, T., Zhao, S., Bei, N., Wu, J., Liu, S., Li, X., Liu, L., Qian, Y., Yang, Q., Wang, Y., Zhou, W., Cao, J. and Li, G.: Secondary organic aerosol enhanced by increasing atmospheric oxidizing capacity in Beijing–Tianjin–Hebei (BTH), China, Atmos. Chem. Phys., 19(11), 7429–7443, doi:10.5194/acp-19-7429-2019, 2019.
[18] Feng, T., Zhou, W., Wu, S., Niu, Z., Cheng, P., Xiong, X. and Li, G.: High-resolution simulation of wintertime fossil fuel CO2 in Beijing, China: Characteristics, sources, and regional transport, Atmos. Environ., 198, 226–235, doi:10.1016/j.atmosenv.2018.10.054, 2019.
[19] Feng, T., Bei, N., Zhao, S., Wu, J., Li, X., Zhang, T., Cao, J., Zhou, W. and Li, G.: Wintertime nitrate formation during haze days in the Guanzhong basin, China: A case study, Environ. Pollut., 243, 1057–1067, doi:10.1016/j.envpol.2018.09.069, 2018.
[20] Feng, T., Zhou, W., Wu, S., Niu, Z., Cheng, P., Xiong, X. and Li, G.: Simulations of summertime fossil fuel CO2 in the Guanzhong basin, China, Sci. Total Environ., 624, 1163–1170, doi:10.1016/j.scitotenv.2017.12.021, 2018.
[21] Feng, T., Bei, N., Huang, R.-J., Cao, J., Zhang, Q., Zhou, W., Tie, X., Liu, S., Zhang, T., Su, X., Lei, W., Molina, L. T. and Li, G.: Summertime ozone formation in Xi'an and surrounding areas, China, Atmos. Chem. Phys., 16(7), 4323–4342, doi:10.5194/acp-16-4323-2016, 2016.
[22] Feng, T., Li, G., Cao, J., Bei, N., Shen, Z., Zhou, W., Liu, S., Zhang, T., Wang, Y., Huang, R.-J., Tie, X. and Molina, L. T.: Simulations of organic aerosol concentrations during springtime in the Guanzhong Basin, China, Atmos. Chem. Phys., 16(15), 10045–10061, doi:10.5194/acp-16-10045-2016, 2016.
[23] Feng, T., Zhou, W., Beck, W., Du, Y. and Sha, L.: Spatiotemporal relationship between temperature and precipitation in inland China from meteorological data and paleoclimatic implications for lacustrine oxygen records, Quat. Int., 349(C), 291–299, doi:10.1016/j.quaint.2014.08.005, 2014.
[24] Zhao, S., Feng, T., Tie, X., Li, G. and Cao, J.: Air Pollution Zone Migrates South Driven by East Asian Winter Monsoon and Climate Change, Geophys. Res. Lett., 48(10), e2021GL092672, doi:10.1029/2021GL092672, 2021.
[25] Zhao, S., Feng, T., Tie, X. and Wang, Z.: The warming Tibetan Plateau improves winter air quality in the Sichuan Basin, China, Atmos. Chem. Phys., 20(23), 14873–14887, doi:10.5194/acp-20-14873-2020, 2020.
[26] Zhang, L., Hou, X., Xu, S., Feng, T., Cheng, P., Fu, Y. and Chen, N.: Temporal variation in 129I and 127I in aerosols from Xi'an, China: influence of East Asian monsoon and heavy haze events, Atmos. Chem. Phys., 20(4), 2623–2635, doi:10.5194/acp-20-2623-2020, 2020.
[27] Liu, L., Bei, N., Wu, J., Liu, S., Zhou, J., Li, X., Yang, Q., Feng, T., Cao, J., Tie, X. and Li, G.: Effects of stabilized Criegee intermediates (sCIs) on sulfate formation: a sensitivity analysis during summertime in Beijing–Tianjin–Hebei (BTH), China, Atmos. Chem. Phys., 19(21), 13341–13354, doi:10.5194/acp-19-13341-2019, 2019.
[28] Liu, L., Wu, J., Liu, S., Li, X., Zhou, J., Feng, T., Qian, Y., Cao, J., Tie, X. and Li, G.: Effects of organic coating on the nitrate formation by suppressing the N2O5 heterogeneous hydrolysis: a case study during wintertime in Beijing–Tianjin–Hebei (BTH), Atmos. Chem. Phys., 19(12), 8189–8207, doi:10.5194/acp-19-8189-2019, 2019.
[29] Wu, J., Bei, N., Hu, B., Liu, S., Zhou, M., Wang, Q., Li, X., Liu, L., Feng, T., Liu, Z., Wang, Y., Cao, J., Tie, X., Wang, J., Molina, L. T. and Li, G.: Aerosol–radiation feedback deteriorates the wintertime haze in the North China Plain, Atmos. Chem. Phys., 19(13), 8703–8719, doi:10.5194/acp-19-8703-2019, 2019.
[30] Wu, J., Bei, N., Hu, B., Liu, S., Zhou, M., Wang, Q., Li, X., Liu, L., Feng, T., Liu, Z., Wang, Y., Cao, J., Tie, X., Wang, J., Molina, L. T. and Li, G.: Is water vapor a key player of the wintertime haze in North China Plain? Atmos. Chem. Phys., 19(13), 8721–8739, doi:10.5194/acp-19-8721-2019, 2019.
[31] Zhao, S., Feng, T., Tie, X., Dai, W., Zhou, J., Long, X., Li, G. and Cao, J.: Short-Term Weather Patterns Modulate Air Quality in Eastern China During 2015-2016 Winter, J. Geophys. Res., 124(2), 986–1002, doi:10.1029/2018jd029409, 2019
[32] Zeng, Y., Shen, Z., Zhang, T., Di Lu, Li, G., Lei, Y., Feng, T., Wang, X., Huang, Y., Zhang, Q., Xu, H., Wang, Q. and Cao, J.: Optical property variations from a precursor (isoprene) to its atmospheric oxidation products, Atmos. Environ., 193, 198–204, doi:10.1016/j.atmosenv.2018.09.017, 2018.
[33] Long, X., Bei, N., Wu, J., Li, X., Feng, T., Xing, L., Zhao, S., Cao, J., Tie, X., An, Z. and Li, G.: Does afforestation deteriorate haze pollution in Beijing–Tianjin–Hebei (BTH), China? Atmos. Chem. Phys., 18(15), 10869–10879, doi:10.5194/acp-18-10869-2018, 2018.
[34] Niu, Z., Zhou, W., Feng, X., Feng, T., Wu, S., Cheng, P., Lu, X., Du, H., Xiong, X. and Fu, Y.: Atmospheric fossil fuel CO2 traced by 14CO2 and air quality index pollutant observations in Beijing and Xiamen, China, Environ Sci Pollut Res, 25(17), 17109–117117, doi:10.1007/s11356-018-1616-z, 2018.
[35] Long, X., Tie, X., Li, G., Cao, J., Feng, T., Zhao, S., Xing, L. and An, Z.: Effect of ecological restoration programs on dust concentrations in the North China Plain: a case study, Atmos. Chem. Phys., 18(9), 6353–6366, doi:10.5194/acp-18-6353-2018, 2018.
[36] Zhao, S., Feng, T., Tie, X., Long, X., Li, G., Cao, J., Zhou, W. and An, Z.: Impact of Climate Change on Siberian High and Wintertime Air Pollution in China in Past Two Decades, Earth's Future, 108(D6), 1913–16, doi:10.1002/2017EF000682, 2018. (该成果被新华网英文版(//www.xinhuanet.com/english/2018-05/18/c_137189118.htm)和中国科学报(2018年5月17日第4版//news.sciencenet.cn/dz/dznews_photo.aspx?id=30157)报导)
[37] Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X. and Molina, L. T.: A possible pathway for rapid growth of sulfate during haze days in China, Atmos. Chem. Phys., 17(5), 3301–3316, doi:10.5194/acp-17-3301-2017, 2017.
[38] Li, G., Bei, N., Cao, J., Wu, J., Long, X., Feng, T., Dai, W., Liu, S., Zhang, Q. and Tie, X.: Widespread and persistent ozone pollution in eastern China during the non-winter season of 2015: observations and source attributions, Atmos. Chem. Phys., 17(4), 2759–2774, doi:10.5194/acp-17-2759-2017, 2017.
[39] Bei, N., Wu, J., Elser, M., Feng, T., Cao, J., Haddad, El, I., Li, X., Huang, R., Li, Z., Long, X., Xing, L., Zhao, S., Tie, X., Prévôt, A. S. H. and Li, G.: Impacts of meteorological uncertainties on the haze formation in Beijing–Tianjin–Hebei (BTH) during wintertime: a case study, Atmos. Chem. Phys., 17(23), 14579–14591, doi:10.5194/acp-17-14579-2017, 2017.
[40] Su, X., Tie, X., Li, G., Cao, J., Huang, R., Feng, T., Long, X. and Xu, R.: Effect of hydrolysis of N2O5 on nitrate and ammonium formation in Beijing China: WRF-Chem model simulation, Sci. Total Environ., 579(C), 221–229, doi:10.1016/j.scitotenv.2016.11.125, 2017.
[41] Wu, J., Li, G., Cao, J., Bei, N., Wang, Y., Feng, T., Huang, R., Liu, S., Zhang, Q. and Tie, X.: Contributions of trans-boundary transport to summertime air quality in Beijing, China, Atmos. Chem. Phys., 17(3), 2035–2051, doi:10.5194/acp-17-2035-2017, 2017.
[42] Bei, N., Wu, J., Elser, M., Feng, T., Cao, J., Haddad, El, I., Li, X., Huang, R., Li, Z., Long, X., Xing, L., Zhao, S., Tie, X., Prévôt, A. S. H. and Li, G.: Impacts of meteorological uncertainties on the haze formation in Beijing–Tianjin–Hebei (BTH) during wintertime: a case study, Atmos. Chem. Phys., 17(23), 14579–14591, doi:10.5194/acp-17-14579-2017, 2017.
[43] Bei, N., Li, G., Huang, R.-J., Cao, J., Meng, N., Feng, T., Liu, S., Zhang, T., Zhang, Q. and Molina, L. T.: Typical synoptic situations and their impacts on the wintertime air pollution in the Guanzhong basin, China, Atmos. Chem. Phys., 16(11), 7373–7387, doi:10.5194/acp-16-7373-2016, 2016.
[44] Bei, N., Xiao, B., Meng, N. and Feng, T.: Critical role of meteorological conditions in a persistent haze episode in the Guanzhong basin, China, Sci. Total Environ., 550, 273–284, doi:10.1016/j.scitotenv.2015.12.159, 2016.
[45] Li, N., Long, X., Tie, X., Cao, J., Huang, R., Zhang, R., Feng, T., Liu, S. and Li, G.: Urban dust in the Guanzhong basin of China, part II: A case study of urban dust pollution using the WRF-Dust model, Sci. Total Environ., 541(C), 1614–1624, doi:10.1016/j.scitotenv.2015.10.028, 2016.
[46] Long, X., Li, N., Tie, X., Cao, J., Zhao, S., Huang, R., Zhao, M., Li, G. and Feng, T.: Urban dust in the Guanzhong Basin of China, part I: A regional distribution of dust sources retrieved using satellite data, Sci. Total Environ., 541(C), 1603–1613, doi:10.1016/j.scitotenv.2015.10.063, 2016.
[47] Long, X., Tie, X., Cao, J., Huang, R., Feng, T., Li, N., Zhao, S., Tian, J., Li, G. and Zhang, Q.: Impact of crop field burning and mountains on heavy haze in the North China Plain: a case study, Atmos. Chem. Phys., 16(15), 9675–9691, doi:10.5194/acp-16-9675-2016, 2016.
[48] Zhao, S., Tie, X., Cao, J., Li, N., Li, G., Zhang, Q., Zhu, C., Long, X., Li, J., Feng, T. and Su, X.: Seasonal variation and four-year trend of black carbon in the Mid-west China: The analysis of the ambient measurement and WRF-Chem modeling, Atmos. Environ., 123(Part B), 430–439, doi:10.1016/j.atmosenv.2015.05.008, 2015.
[49] Wang, Q. Y., Huang, R. J., Cao, J. J., Tie, X. X., Ni, H. Y., Zhou, Y. Q., Han, Y. M., Hu, T. F., Zhu, C. S., Feng, T., Li, N. and Li, J. D.: Black carbon aerosol in winter northeastern Qinghai–Tibetan Plateau, China: the source, mixing state and optical property, Atmos. Chem. Phys., 15(22), 13059–13069, doi:10.5194/acp-15-13059-2015, 2015.
[50] 贝耐芳, 冯添, 吴佳睿, 李国辉: 西安地区夏季臭氧的模拟研究, 地球环境学报, 8(6), 552–567, doi:10.7515/JEE201706007, 2018.
[51] 贝耐芳, 吴佳睿, 冯添, 李国辉: 交通源对西安夏季空气质量影响模拟研究, 地球环境学报, 8(6), 524–540, doi:10.7515/JEE201706005, 2018.
[52] 苏小莉, 冯添, 曹军骥: 2015年国庆期间我国城市空气污染特征及成因分析, 地球环境学报, 8(1), 25–36, doi:10.7515/JEE201701004, 2017.
[53] 李国辉, 冯添: 关中地区重污染期间PM2.5输送与来源的模拟研究, 地球环境学报, 7(4), 1–13, doi:10.7515/JEE201604009, 2016.
[54] 杜亚娟, 冯添, 康志海: 北方季风边缘区洞穴石笋δ18O序列预测初步研究, 科学通报, 58(3), 254–259, doi:10.1360/972012-437, 2013.